A role for Mints in transmitter release: Mint 1 knockout mice exhibit impaired GABAergic synaptic transmission.

نویسندگان

  • Angela Ho
  • Wade Morishita
  • Robert E Hammer
  • Robert C Malenka
  • Thomas C Sudhof
چکیده

Mints (also called X11-like proteins) are adaptor proteins composed of divergent N-terminal sequences that bind to synaptic proteins such as CASK (Mint 1 only) and Munc18-1 (Mints 1 and 2) and conserved C-terminal PTB- and PDZ-domains that bind to widely distributed proteins such as APP, presenilins, and Ca(2+) channels (all Mints). We find that Mints 1 and 2 are similarly expressed in most neurons except for inhibitory interneurons that contain selectively high levels of Mint 1. Using knockout mice, we show that deletion of Mint 1 does not impair survival or alter the overall brain architecture, arguing against an essential developmental function of the Mint 1-CASK complex. In electrophysiological recordings in the hippocampus, we observed no changes in short- or long-term synaptic plasticity in excitatory synapses from Mint 1-deficient mice and detected no alterations in the ratio of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) to N-methyl-d-aspartate (NMDA) receptor-mediated synaptic currents. Thus the Mint 1-CASK complex is not required for AMPA- and NMDA-receptor functions or for synaptic plasticity in excitatory synapses. In inhibitory synapses, however, we uncovered an approximately 3-fold increase in presynaptic paired-pulse depression, suggesting that deletion of Mint 1 impairs the regulation of gamma-aminobutyric acid release. Our data indicate that Mints 1 and 2 perform redundant synaptic functions that become apparent in Mint 1-deficient mice in inhibitory interneurons because these neurons selectively express higher levels of Mint 1 than Mint 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic analysis of Mint/X11 proteins: essential presynaptic functions of a neuronal adaptor protein family.

Mints/X11s are adaptor proteins composed of three isoforms: neuron-specific Mints 1 and 2, and the ubiquitously expressed Mint 3. We have now analyzed constitutive and conditional knock-out mice for all three Mints/X11s. We found that approximately 80% of mice lacking both neuron-specific Mint isoforms (Mints 1 and 2) die at birth, whereas mice lacking any other combination of Mint isoforms sur...

متن کامل

Adrenal Chromaffin Cells Exhibit Impaired Granule Trafficking In NCAM Knockout Mice. Authors:

Neural cell adhesion molecule (NCAM) plays several critical roles in neuron path-finding and intercellular communication during development. In the clinical setting serum NCAM levels are altered in both schizophrenic and autistic patients. NCAM knock out mice have been shown to exhibit deficits in neuronal functions including impaired hippocampal long term potentiation and motor coordination. R...

متن کامل

Adrenal chromaffin cells exhibit impaired granule trafficking in NCAM knockout mice.

Neural cell adhesion molecule (NCAM) plays several critical roles in neuron path-finding and intercellular communication during development. In the clinical setting, serum NCAM levels are altered in both schizophrenic and autistic patients. NCAM knockout mice have been shown to exhibit deficits in neuronal functions including impaired hippocampal long term potentiation and motor coordination. R...

متن کامل

Impaired GABAB-mediated presynaptic inhibition increases excitatory strength and alters short-term plasticity in synapsin knockout mice

Synapsins are a family of synaptic vesicle phosphoproteins regulating synaptic transmission and plasticity. SYN1/2 genes are major epilepsy susceptibility genes in humans. Consistently, synapsin I/II/III triple knockout (TKO) mice are epileptic and exhibit severe impairments in phasic and tonic GABAergic inhibition that precede the appearance of the epileptic phenotype. These changes are associ...

متن کامل

Neuromuscular synaptic function in mice lacking major subsets of gangliosides.

Gangliosides are a family of sialylated glycosphingolipids enriched in the outer leaflet of neuronal membranes, in particular at synapses. Therefore, they have been hypothesized to play a functional role in synaptic transmission. We have measured in detail the electrophysiological parameters of synaptic transmission at the neuromuscular junction (NMJ) ex vivo of a GD3-synthase knockout mouse, e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 3  شماره 

صفحات  -

تاریخ انتشار 2003